Fitness Function in Genetic Algorithm based Information Filtering - A Survey
نویسنده
چکیده
Abstract –Information filtering systems have a vital role in exploiting the flurry of information that keeps on growing exponentially. This study focuses on improving the performance of genetic algorithms based information filtering. In GA, the fitness function is the performance measure for relevance judgement. Being the backbone of the evaluation process the selection of fitness function is vital in the design of a GA. The secondary data gathered from past studies lead to the conclusion that Cosine Coefficient is the better similarity measure among other alternatives like Euclidean Distance, Dice Coefficient, Jaccard Coefficient and Inner Product.
منابع مشابه
Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملA New Method for Color Gamut Mapping by Genetic Algorithm
To reproduce an image, it is necessary to map out of gamut colors of the image to destination gamut. It is clear that the best color gamut mapping introduces the perceptually closest image to the original one. In this study, a new color gamut mapping is purposed by the aid of Genetic Algorithm (GA). The color difference between the original and mapped images based on S-LAB formula was chosen as...
متن کاملA Multi-Mode Resource-Constrained Optimization of Time-Cost Trade-off Problems in Project Scheduling Using a Genetic Algorithm
In this paper, we present a genetic algorithm (GA) for optimization of a multi-mode resource constrained time cost trade off (MRCTCT) problem. The proposed GA, each activity has several operational modes and each mode identifies a possible executive time and cost of the activity. Beyond earlier studies on time-cost trade-off problem, in MRCTCT problem, resource requirements of each execution mo...
متن کاملOPTIMAL SENSOR PLACEMENT FOR MODAL IDENTIFICATION OF A STRAP-BRACED COLD FORMED STEEL FRAME BASED ON IMPROVED GENETIC ALGORITHM
This paper is concerned with the determination of optimal sensor locations for structural modal identification in a strap-braced cold formed steel frame based on an improved genetic algorithm (IGA). Six different optimal sensor placement performance indices have been taken as the fitness functions two based on modal assurance criterion (MAC), two based on maximization of the determinant of a Fi...
متن کامل